Cosmological constraints from the convergence 1-point probability distribution

نویسندگان

  • Kenneth Patton
  • Jonathan Blazek
  • Klaus Honscheid
  • Eric Huff
  • Peter Melchior
  • Ashley J. Ross
  • Eric Suchyta
چکیده

We examine the cosmological information available from the 1-point probability distribution (PDF) of the weak-lensing convergence field, utilizing fast L-PICOLA simulations and a Fisher analysis. We find competitive constraints in the Ωm-σ8 plane from the convergence PDF with 188 arcmin pixels compared to the cosmic shear power spectrum with an equivalent number of modes (` < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is less susceptible, and improves the total figure of merit by a factor of 2 − 3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cosmological argument in proving the existence of God from Imam Khomeini's (RA) point of view

  This article reviews Cosmological argument in proving the existence of God from the viewpoint of Imam Khomeini (RA). At first, various views to the existence of God are reviewed and then its etymology will be reviewed. Cosmological argument proves God through universal premises about truth and world and and the Movement Argument, Casual Argument and Necessity and Possibility Argument are dif...

متن کامل

Do measurements of the one - point distribution of aperture - mass improve constraints on cosmology ?

We study the possibility of using the entire probability distribution function (PDF) of the aperture mass Map and its related cumulative probability distribution function (CPDF) to obtain meaningful constraints on cosmological parameters. Deriving completely analytic expressions for the associated covariance matrices, we construct the Fisher matrix and use it to estimate the accuracy with which...

متن کامل

A Universal Probability Distribution Function for Weak-lensing Amplification

We present an approximate form for the weak lensing magnification distribution of standard candles, valid for all cosmological models, with arbitrary matter distributions, over all redshifts. Our results are based on a universal probability distribution function (UPDF), P (η), for the reduced convergence, η. For a given cosmological model, the magnification probability distribution, P (μ), at r...

متن کامل

Evolution of the Cosmological Density Distribution Function: A New Analytical Model

The one-point probability distribution function (pdf) of the large-scale density field is an important tool to follow the evolution of cosmological structures. In this paper we present a new model for this pdf for all regimes and all densities, that is from linear to highly non-linear scales and from rare voids up to rare high densities. This is probably the simplest model one can build which i...

متن کامل

Reconstruction of the One-point Distribution of Convergence from Weak Lensing by Large-scale Structure

Weak lensing measurements are starting to provide statistical maps of the distribution of matter in the universe that are increasingly precise and complementary to cosmic microwave background maps. The probability distribution (PDF) provides a powerful tool to test non-Gausian features in the convergence field and to discriminate the different cosmological models. In this letter, we present a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016